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Abstract—A plate bending element based on the gencralized laminate plate theory (GLPT) is used
to evaluate new composite laminates known as the ARALL-1* Laminates. The plate finite element
accounts for the transverse shear deformation and layer-wise description of the displacements. The
finite clement is used to evaluate the stresses, vibration and buckling charucteristics of 2/ and 3,2
ARALL Laminates.

1. BACKGROUND

Laminated composite plates are often modclled using the classical laminate plate theory
(CLPT) or the first-order shear deformation plate theory (FSDT). In both cuses the laminate
is treated as a single-layer plate with equivalent stiffnesses, and the displacements are
assumed to vary through the thickness according to a single expression (see Reddy, 1984,
1989a,b). not allowing for possible discontinuitics in strains at an interface of dissimilar
material layers. A laminate made of flexible layers next to stiff layers will experience such
discontinuous strains.

Recently, Reddy (1987) presented a laminate plate theory that allows piece-wise rep-
resentation of displacements through individual lamina of a laminate. In the generalized
laminate plate theory (GLPT), the equations of three-dimensional elasticity are reduced to
differential equations in terms of unknown functions in two dimensions, by assuming layer-
wise approximation of the displacements through the thickness. Exact analytical solutions
of the theory were developed by Barbero (1989) and Barbero ¢f af. (1990) to cvaluate the
accuracy of the theory compared to the 3-D clasticity theory. The results indicated that the
generulized laminate plate theory allows accurate determination of interfaminar stresses.

The present paper deals with the application of Reddy's gencralized plate theory to
ARALL Laminates. ARALL Laminates are hybrid laminates in which layers of aramid-
epoxy are placed between thin, high-strength aluminium alloy layers (see Bucci er of., 1988).
They are produced as sheet materials in a normal autoclave bonding cycle. ARALL
Laminates were primarily developed as materials with good damage tolerance properties.
They combine low density and high strength properties, and therefore are very attractive
for aerospace applications. The designations 2/1 and 3/2 correspond to (Al/Ar/Al) and
(Al/Ar/Al/Ar/Al), respectively (see Fig. 1). Each aramid layer is modelled as three layers.
The middle layer represents the fiber-rich part of the aramid layer, and the layers on either
side represent resin-rich parts that bond the aramid fiber to the aluminium layers. In this
study, aluminium layers are taken to be 0.03048 mm thick, fiber-rich layers 0.0144 mm
thick and resin-rich layers 0.0072 mm thick. Thus, ARALL 2/1 is modelled as a six-layer
laminate (Al/resin/Ar),. ARALL 3/2 is modelled using 10 layers (Al/resin/Ar/resin/Al)..
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Fig. 1. The ARALL 2/t and 3/2 Laminates.

In the interest of brevity, only the main equations of the theory are reviewed and the
mijor steps of the formulation are presented. The analysis is performed using the plate
bending clement developed by Reddy er af. (1989). Application of the ¢lement to ARALL
Laminates is the main focus of this study.

2. A REVIEW OF GLPT

Consider a laminated plate composed of N orthotropic lamina, each being oriented
arbitrarily with respect to the laminate (x, y) coordinates, which are taken to be in the
midplane of the laminate. The displacements (u,, u,, u;) at a point (x, y, ) in the laminate
are assumed to be of the form

u(x, y,2) = u(x, )+ U(x, y,2)
ur(x, p,2) = v(e, )+ Vix, ,2)
uy(x, y.2) = w(x, »), )

where (i, v, w) are the displacement of a point (x, y, 0) on the reference plane of the laminate,
and U and V are functions which vanish on the reference plane:

Ulx, ».0) = V(x, »,0) =0. (2)

In order to reduce the three-dimensional theory to a two-dimensional one, we assume
that ¥ and ¥V are approximated as

Ulx.y.2) = Y Uix, né’(2)
J=1

Vix.y,2) =Y Vi(x 0’ ©), (3)
j=i

where U; and ¥, are undetermined coefficients, and ¢/ are any continuous functions that



Bending, vibration and stability of laminates 587

satisfy the condition

¢0)=0 forall j=12....n @)
Note that the transverse deflection here is assumed to be independent of the thickness
coordinate, an assumption often used in most plate theories. This amounts to the neglect
of the transverse normal stress.

The approximation in eqn (3) can ailso be viewed as the global semi-discrete finite-
element approximations of U and ¥ through thickness. In that case ¢’ denote the global
interpolation functions, and U, and V; are the global nodal vatues of U and ¥ (and possibly
their derivatives) at the nodes through the thickness of the laminate. For example, a finite-
element approximation based on the Lagrangian interpolation through thickness can be
obtained from eqn (3) by setting [if the midplane does not coincide with an interface. it is
used as an interface to satisfy eqn (2)}. n = pN + 1, where

N = number of layers through thickness;
P = degree of the global interpolation polynomials, ¢/(); and
U, V, = global nodal values of U and V.

For example. if a piece-wise linear displacement distribution is chosen, the corresponding
functions ¢'(z) are

P(z) =

where =, denote the global thickness coordinate of the node between the jthand the (j+ Dith
layers.
The equilibrium cquations of the theory can be derived using the principle of virtual
displacements (see Reddy, 1984),
o,
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(0. 0, 0., 0., 0,.) are the stresses and ¢ is the distributed transverse load. The virtual
work statement in eqn (5a) gives (2n+3) differential equations in (2n+3) variables
(u.e,w, U, V). The form of the geometric and force boundary conditions is given below :

Geometric (Essential) Force (Natural)
Nan +Nyn,
Nyn.+Nn,
Qn+0Q.n,
Nin +Nin,
Njn.+N|n, ®)

SICER

where (n,, n,) denote the direction cosines of a unit normal to the boundary of the midplane
0.
The constitutive equations of the laminate are given by

(N} = [4]{e} + ki, 8*]{ex) (Ta)

(N} =[B'}{e} + kZl [D*Ned. (7b)

where the strains {¢} and {¢}, and the matrices [A], [B'] and [D*] are given in Reddy
{1987) ; also sce the Appendix.

3. FINITE-ELEMENT FORMULATION

The displacements (i, v, w, U, V)) arc expressed, over cach element, as a lincar com-
bination of the 2-D shape functions (¢,) and the nodal values (4, v, w,, Uj, V;) as follows:

(“\ v, w, (jjw L’;) = Z (“n U Wy U;’ V:)'ﬁ: (8)
i

where m is the number of nodes per element,
Using eqn (8), the strains can be expressed in the form

le} = (H{u} {e'} = [H'){U'} (8a)
where
u
) U
fup =S8y, U'} = {Vf} (8b)

W /

The matrices [/] and [#7] are given in the Appendix.
Using eqns (8) in the virtual work statement, we obtain the finite element model (see
Reddy er al., 1989)

[KI{U} = {F}. )

4, INTERLAMINAR STRESS CALCULATION

When a piece-wise linear interpolation through the thickness is used, GLPT provides
an excellent representation of the displacements, and an accurate prediction of the in-
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plane stresses (g,,.0,,,0,,) as demonstrated by Barbero et al. (1990). Interlaminar stresses
(6...0,..0..) are easily computed from the equilibrium equations of 3-D-elasticity when
exact analytical solutions are available. An approximate technique is used in this study to
integrate the equilibrium equations, using the in-plane stress information provided by the
finite element solution. The scheme as presented by Chaudhuri (1987), is extended here to
quadrilateral isoparametric elements. [t approximates the shear stress distribution through
each layer with a quadratic function, thus requiring 3NV equations for each of the shear
stresses (0 ...0,.). where N is the number of layers. Here, N equations are used to satisfy
the (V) average shear stresses on each layer. Two equations are used to impose vanishing
shear stresses at the surfaces of the plate. Then, (N —1) equations are employed to satisfy
continuity of the shear stresses at the interfaces between layers. Finally. the remaining
(v —1) equations are used to compute the jump in ... (or g,. ., at each interface.

The average shear stresses on each layer are computed from the constitutive equations
and the displacement field obtained in the finite-element analysis.

In this work, the following equilibrium equations

Oz = — (a.\'.\'..\‘ + a.n'.y) O'.,. = - (axy..\' + o'y_v._r) ( IO)

are used to compute o,.. and o, directly from the finite-element approximation. The in-
planc components of the stresses and their in-plane derivatives (o,..: 0,,,; 6, and g, ,)
are computed from the constitutive equations for each layer, i.e.

(w2 aU, )

b
a, QI[Q':QL‘ 1'v ’:l aV
0,y =[0120:202 |4 2-£+ Y wie! (1n
a, Q1:0:05 0% i Ox

]

A ] ¢ (')V,)l.
Laj;"“a“.;*Z(ay*ax ]

jal

The procedure thus requires computation of second derivatives of the displacements
(u.0,. U, V), which can be obtained from the finite element approximation (see Reddy,
1986, Problem 7-2-11, p. 435).

5. DISCUSSION OF THE RESULTS

Bending analysis

The bending behavior of ARALL Laminates under uniform transverse loading is
studied. A simply-supported square laminate is considered. In order to assess the effect of
the thickness ratio on the response, the following non-dimensionalizations are used :

- |
(6.\" gy, G'".) = (0’_“ G, 6.\4') -
! 1 v gs?

(0'-‘,.:. 0"") = (ay:' Ox:) —

__ 100E,

00E
W= e w, (i4,0)= Al

1
qhs®

(u,v) (12)

where g is the intensity of the uniform transverse load. ARALL 2/1 is modelled as a six-
layer laminate (Al/resin/aramid),. ARALL 3/2 is modelled using 10 layers representing the
different materials in the same form as for ARALL 2/1.
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Fig. 2. Through-the-thickness distribution of the transverse shear stress o, in simply-supported
ARALL 2/1 and ARALL 3,2 plates under uniform load.

The material properties used are,

aluminium::
E=104x10°psi, v=0.333;

resin-rich aramid ;
E, =2196x 10°psi, E,=4.8219x 10%psi
G, = 1L5717x 10 psi, G,y = 1.5576 x 10° psi
vy = 03749, vy, = 0.5479;

fiber-rich aramid :

E, = 1.2549 x 107 psi, E, = 7.6525 x 10° psi
Gy = 28955 10 psi, G,y = 2.6462 x 10* psi
V|2 = 0.3458, V:| = 0.4459. (13)

Duce to symmetry, only a quarter (upper right quadrant) of the plate is modelled using a
4 x 4 mesh of eight-node isoparametric elements.

Both in-plane and interlaminar shear stresses can be computed using either the consti-
tutive equations or equilibrium equations. In-plane stresses are linear in each layer and they
approximate closely the exact solution. Interlaminar shear stresses are constant in each
layer, their value being approximately the average of the exact solution. It is also possible
to obtain the actual distribution of interlaminar shear stresses by a post-processing algo-
rithm (see Section 4) if the solution is obtained using quadratic elements.

For all cases the stresses are presented as & function of the non-dimensional thickness
=/h. The results shown correspond to values at the Gauss points closest to the points where
the solution has a maximum, i.c. 6, (2, 2, 2), 6,,(2,2,2), 6.,(f, f.2), 6..(B,2.2), 6,.(2, B.2),
with x = 0.526 ¢ and f# = 0.973a. The simply-supported boundary conditions used are :

w(0,p) = wla.t) = v(0, y) = v(a. y) = V,(0,y) = Vy(a.y) =0,
w(x,0) = w(x,h) = u(x,0) = u(x,b) = U;(x,0) = U(x,h) = 0. (14)
The symmetry along the centerline implics that,

u(aj2.y) = U'(a/2,y) =0,
v(x.h/2) = V'(s.b/2) =0 (15)
where j = |,..., N, and N is the number of layers in the laminate.

From the distribution of interlaminar, transverse shear stresses (Figs 2 and 3), we can
observe that the maximum occurs in the aluminium layers, either at the outer layers for
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Fig. 3. Through-the-thickness distribution of the transverse shear stress 7. in simply-supported
ARALL 2/1 and ARALL 3/2 plates under uniform load.
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Fig. 4. Through-the-thickness distribution of the in-plane normal stress 4, in simply-supported
ARALL 2/1 and ARALL 3/2 plates under uniform load.
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Fig. 5. Through-the-thickness distribution of the in-plune normal stress o, in simply-supported
ARALL 2/t and ARALL 3/2 plates under uniform load.

ARALL 2/1 or at the center layer for ARALL 3/2. This may be an advantageous factor
because the matrix material has low strength in shear. The first-order shear deformation
theory (FSDT) predicts even lower shear stresses at the aramid layers. For hybrid com-
posites like ARALL Laminates, the shear strain distribution is not a constant, contrary to
the assumption made in FSDT. Therefore, large shear strains do occur in the more compliant
aramid layers thus relaxing the shear stresses through the laminate, However, shear stresses
do not reach high values in the compliant layers due to the low shear moduli of the aramid.
As a result, an optimization with respect to shear failure can be accomplished by the use
of compliant layers.

Plots of the in-plane stresses, o,, and o,, along the fiber direction and perpendicular
to the fibers, are shown in Figs 4 and 5, where it can be observed that the resin-rich layers
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Fig. 6. Comparison between a,. obtained from constitutive equations and equilibrium equations
using quadratic elements.

are subject to very low stresses and that the in-plane stress is carried by the aluminium
layers for both kind of laminates. The in-plane stresses reported here do not include the
residual stresses due to pre-straining of ARALL-1 Laminates. The mechanics of the pre-
straining of ARALL-! Laminates are described by Teply et al. (1987). Thus. the actual
stresses will be the sum of the residual stresses and stresses shown in Figs 4-5.

The transverse shear stress o, computed from equilibrium equations (continuous
curves) and those computed from constitutive equations (discontinuous lines) are shown
in Fig. 6. Quadratic elements are used to obtain both stress ficlds. Of course, to obtain the
transverse shear stresses from the constitutive equations one can even use lincar finite
clements. Figure 7 contains a comparison of ¢, computed from the constitutive equations
using lincar finite elements, with that obtained using equilibrium equations and quadratic
clements. It is observed that the discontinuous stress ficlds, computed from the constitutive
cquittions, agree closely with the average of those computed from equilibrium,

The maximum transverse deflections versus side-to-thickness ratio are shown in Fig.
8. It is clear that the deflections obtained by the FSDT are lower than those predicted by
the GLPT. We can also see from Fig. 9 that there is appreciable difference in the maximum
in-plane stresses obtained using the FSDT and GLPT, when the aspect ratio is a/h = 4. In
general, in the GLPT models, the composite laminates are relatively more flexible than by
FSDT. The GLPT allows relative flexibility between stifl and less stiff layers,

A comparison of the response of ARALL Laminates and aluminium is presented in
Figs 10-14. The distribution of in-plane stresses o, 0,, and g, is shown in Figs 10-12. It
is evident that the stress distributions in the aluminium layers are not much affected by the
presence of the aramid layers. The aramid layers are subjected to low stress levels, which
guarantees an extended life for the aramid material. Note that the residual stresses should
be added to the g, and o, stresses (see Teply et al., 1987). The interlaminar shear stresses

£ 04 GLPT
s ahad
2 ‘\
1]
5 9 " gquinbrium \“;‘u- an
- - -
g [ L]
2 0.0 Conn'l"l.mvo 1
esqustions
£ e |
£ 2 ARALL 3/2
3 1
-0.4 ]
00 0.1 0.2 03 04 0S5

Transverse shear stress (xz)

Fig. 7. Comparison between g,. obtained from constitutive cquations (using linear elements) and
equilibrium equations (using quadratic elements).
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Fig. 10. Comparison of the through-the-thickness distribution of the in-plane normal stress o, in
simply-supported ARALL Laminates and aluminium plates.

a,. and o, are reduced by the presence of the more compliant aramid layers, as shown in
Figs 13 and 14 for both the 2/1 and 3/2 lamination sequences.

Vibration results

The vibration of ARALL Laminates and aluminium plates was investigated using
GLPT and CPT. The effects of rotary and in-plane inertia on the vibration of simply-
supported rectangular plates were investigated. Numerical results are presented for various
values of the aspect ratio a/b and thickness ratio a/A. It can be seen from Table | that CPT
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Fig. 11. Comparison of the through-the-thickness distribution of the in-plane normal stress a,, in
simply-supported ARALL Laminates and aluminium plates.
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Fig. 12. Comparison of the through-the-thickness in-plane shear stress a,, in simply-supported
ARALL Laminates and aluminium plates.

0.50
o
-
-
”
0.25 1
z/h ] %
-0.00 4 [
\ seees ARALL 2/1
eeees ARALL 3/2
] N — — ALUMINUM
~0.25 - ~ (0/h=20)
Ny
_—
_—
~030 e T Tone So30 oo 080
Oz

Fig. 13. Comparison of the through-the-thickness transverse shear stress o, in simply-supported
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Fig. 14. Comparison of the through-the-thickness transverse shear stress o,. in simply-supported
ARALL Laminates and aluminium plates.

gives closer results for isotropic materials, while larger differences between CPT and GLPT
can be observed for ARALL Laminates. This is because the hybrid nature of ARALL
Laminates is correctly represented in GLPT, while the different materials are smeared out
in CPT.

Since ARALL Laminates are symmetric, the inclusion of in-plane inertia does not
affect the transverse natural frequency. This is because in-plane and transverse deflections
are uncoupled for symmetric laminates. The results shown in Tables 1, 2 and 3 can be
explained as follows. The frequency w is related to the stiffness K and mass M by the

T
Table |. Fundamental frequency o) = m” ’ \/ Pa for a/h = 1.

h \ Ea
Rotary Inplane ARALL ARALL
alh Theory inertia inertia Al 2/1 n

yes yes 5.84530 5.06894 5.10272

no yes 5.88853 5.0880Y 5.12564

1o GLPT yes no 584530 506894 510272
no no S.8%530 5.08869 5.12564

CPT no no 6.04287 6.32473 6.07226

yes yes 5.36859 3.70444 3.78094

no yes 5.48859 3.72641 380310

5 GLPT yes no 536859 370444 378094
no no 5.48859 3.72641 380310

CPT no no 6.04287 6.32473 6.07226

yes yes 599115 5.90821 5.77432

- no yes 6.00313 5.91849 5.78481
20 GLPT yes Do S9911S 590821 577432
no no 6.00313 5.91849 5.78481

CPT no no 6.04287 6.32473 6.07226

yes yes 6.03448 6.25107 6.02150

no yes 6.03646 6.25324 6.02356

0 GLPT yes no 603448 635107  6.02150
no no 6.03646 6.25324 6.02356

cPT no no 6.04287 6.32473 6.07226

yes yes 6.04077 6.30603 6.05974

no yes 6.04126 6.30660 6.06027

100 GLPT ycs no 6.04077 6.30603 6.05974
no no 6.04126 6.30660 6.06027

CPT no no 6.04287 6.32473 6.07226

SAS 27:8-5
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ab
Table 2. Fundamental frequency & = wy Z_—“ for a/b = 2.
Al
Rotary ARALL ARALL
ah Theory inertia Al 2/1 /2
GLPT yes 5.89692 3.58746 3.49686
5 GLPT no 6.10834 3.62144 3.51801
CPT no 7.55369 7.90325 7.49241
GLPT yes 6.98593 5.22132 5.30423
10 GLPT no 7.09747 5.24796 5.33507
CPT no 7.55369 7.90325 7.49241
GLPT yes 7.39581 6.78216 6.67933
i GLPT no 7.43135 6.80344 6.70291
CPT no 7.55369 7.90325 7.49241
GLPT yes 7.52759 7.678R2 7.34018
50 GLPT no 7.53371 7.68505 7.34617
CcPT no 7.55369 7.90325 7.49241
GLPT yes 7.54714 7.34499 7.45338
100 GLPT no 7.54869 7.84672 7.45499
CPT no 7.55369 7.90325 7.49241

relation,

The fundamental frequency of an ARALL Laminate depends on the transverse stiffness
(i.c. stiffness coetlicients D.,), which is smaller than the axial stiffness (i.c. stiffness cocfficient
D1 1). Because of the specific construction of ARALL Laminates, it can be established that
the following stilfness and mass incqualitics hold:

A'M)I\’“)A-‘:: A’I,“)A[“)Ml\g

where subscripts “APT, <21 and 327 refer to aluminium, 2/1 Laminates and 3/2 Laminates,
respectively. The above inequalitics imply the following two cases of inequalities between
2/t and 3/2 ARALL Laminates:

Casconc: Ky M3, > KM,
CaSCtWOIK“M]g < KnM“‘

h f
Table 3. Fundamental frequency & = wu_ gi' for ajb = 5.
Al

h

Rotary ARALL ARALL

ath Theory inertia Al 214 32
GLPT yes 7.8585 4.9407 4.1486
5 GLPT no 7.8525 2.8837 4.2060
CPT no 15.7120 16.4380 15.5454
GLPT yes 11.6442 6.9430 6.6198
10 GLPT no 15.0222 7.0256 6.6620
cPT no 157120 16.4380 15.5454
GLPT yes 14.2346 10.1474 10.2947
20 GLPT no 14.5105 10.2031 10.3555
CPT no 15.7120 16.4380 15.5353
GLPT yes 15.4370 14.4124 14.0980
50 GLPT no 15.4994 14.4533 14.1423
CPT no 15.7120 16.4380 15.5454
GLPT yes 15.6415 15.8379 15.1381
100 GLPT no 15.6580 15.8541 15.1538

cpPT no 15.71201 16.4380 15.5454
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Table 4. Buckling load ¥ = —— E h’ perpendzcular to the fiber direction of ARALL 2/1 and 32

compared to aluminium plates

Al ARALL 2/1 ARALL 32

ah CPT GLPT CPT GLPT CPT GLPT
10 37 2.1924 3.6396 0.1478 3.2685 1.1380
20 37 3.1350 3.6396 0.5923 3.2685 2.1t
30 37 34171 3.6396 1.1998 3.2685 2.5206
40 37 3.5334 3.6396 17834 3.2685 27321
50 37 3.5914 3.6396 2.2489 3.2685 2.8622
100 37 3.6740 3.6396 3.2201 3.2685 31241
1000 3.7 3.7027 3.6396 3.6385 3.2685 3.2692

Similar inequalities hold for aluminium and 2/1 or 3/2 ARALL Laminates. If Case one
holds then w.; > w,; (i.e. the fundamental frequency of 2/1 Laminates is greater than that
of 372 Laminates). and if Case two holds then w.; < w;;. Similarly, if we replace K; and
M. by K, and M. we arrive at the inequalities:

w3 > Wy, when Case one holds
and

Wy, < wy, when Case two holds.

In the present study Case onc is valid for thin luminates (i.c. /A = 20) and Case two is
vilid for thick laminates (.. a/h < 20). For thick Laminates, while the mass remains the
same as for thin laminates, the stiffness is reduced due to transverse shear deformation. Of
course Case two holds in the classical plate theory for all side-to-thickness ratios. Tables 2
and 3 show that the differences between the results of GLPT and CPT are more cvident as
the aspect ratios a/b increase. From the results, it is evident that ARALL Laminates exhibit
lower fundamental frequencies than aluminium plates for moderate to large thickness ratios
{i.c. a/h < 20). This is because the reduced flexural rigidity, due to the presence of layers
with low shear moduli, outweighs the effect of the slightly lower density of ARALL
Laminates. For large thickness ratios (i.e. a/h > 20), both cffects cancel out, and the
aluminium plates, 3/2 and 2/1 Laminates exhibit increasingly large frequencies.

Buckling results

Buckling loads N, and N, arc presented in Tables 4 and 5 for simply supported
aluminium, ARALL 2/1 and 3/2 Laminates. The in-planc load is uniformly distributed
along x = /2 for Table 4, and along y = b/2 for Table 5. The minimum buckling load
corresponds, at a/b = 1, to mode m = | for all thickness ratios from 10 to 1000. The results
given by GLPT are compared with CPT. [t is noted that the CPT non-dimensional values
are independent of a/h. The buckling loads predicted by GLPT are smaller for low a/h due
to shear deformation as expected. While there is a good corrclation between CPT and
GLPT for aluminium plates, the CPT values deteriorate for low aflt on the ARALL

Nb?
Table 5. Buckling load & = —— in the fiber direction of ARALL 2/1 and 3/2 compared to

Eadt!
aluminium plates
Al ARALL %I ARALL 372
alh CPT GLPT CPT GLPT crT GLPT
{0 37 2.1924 3.6396 0.4443 3.2685 0.9062
20 37 3.1350 3.6396 1.1950 3.2685 1.8651
30 3.7 3447t 3.6396 1.8023 3.2685 2.3365
40 37 3.5334 3.6396 2.2473 3.2685 25944
50 37 35914 3.6396 2.5716 3.2685 2.7553
100 37 3.6740 3.6396 3.271719 3.2685 3.0826

1000 3.7 3.7027 36396 3.6386 3.2685 3.2682
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Laminates. This is because the deformations through the thicknesses of hybrid materials
depart from the assumptions used in CPT.

By comparing the results of the two tables we observe that the CPT value does not
change with the direction of the load. The critical buckling load predicted by CPT for
simply-supported. generally orthotropic square plates. under a uniform in-plane load is

N= (g) [Di)+ D22+ 2(D2+2D¢)].

When the direction of the load changes from 0° to 90", the coefficients D, and D, exchange
their values and the above expression gives the same buckling load. Furthermore, typical
values of these coefficients for ARALL 2/1 Laminates are:

D|| = 96]26' psi
D,; = 958063 psi.

Therefore, even if the load is changed from the fiber direction to an angle different from
90°, the buckling load will remain almost constant. The GLPT does not predict identical
values due to the consideration of shear deformation, but the results follow the same trend.

6. CONCLUSIONS

The gencralized laminate plate theory of Reddy (1987) is used to evaluate the static
and dynamic response of ARALL Laminates. The generalized laminate theory yields
accurate results for displacements, stresses, natural frequencies and buckling loads. While
the GLPT plate bending element is computationally expensive compared to the FSDT plate
clement (or the Minlin plate element), it yiclds accurate results for all stresses and is less
expensive compared to a three-dimensional finite clement analysis of laminated composite
plates.
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APPENDIX: STRAIN-DISPLACEMENT MATRICES AND LAMINATE STIFFNESSES
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